Physical Origins of Outflowing Cold Clouds in Local Star-forming Dwarf Galaxies

Presenter: Zixuan Peng

Advisor: Crystal L. Martin

Collaborators: Zirui Chen, Drummond Fielding, Xinfeng Xu, Timothy Heckman, Lise Ramambason, Yuan Li, Cody Carr, Weida Hu, Zuyi Chen, Claudia Scarlata, Alaina Henry

Image Credit: NASA/JPL-Caltech/STScI/CXC/UofA/

Superbubble Expansion & Blowout

Credit: NASA/JPL-Caltech/STScI/CXC/UofA/ UC SANTA BARBARA

Detection of Superbubble Expansion & Blowout

What are the physical origins of the blueshifted components in UV absorption lines and broad components in optical emission lines (galactic winds? expanding superbubble shells?)
UC SANTA BARBARA

Insights from an Extreme-emission-line Dwarf Galaxy

Outflowing Components in Local SF Dwarf Galaxies

Peng et al. (2025): 14 CLASSY galaxies with Keck/ESI Velocit

Velocity Components' Demarcation Map

Scaling Relations with Galaxy Observables

Luminosity-Deficit Issue of Wind Models

CCSN-driven Multiphase Galactic Wind Model (Fielding & Bryan 2022)

CCSN-driven galactic wind models can <u>reproduce the velocity widths</u> of these outflowing components but <u>underestimate most [OIII] 5007 luminosities by at least one dex</u>.

Peng et al. (2025)

Main Takeaways from Peng et al. (2025)

- Different physical origins of outflowing components (superbubble shells vs. galactic winds)
- 2. Star-forming galaxies can power galactic winds with FWHM $\gtrsim 1000$ km s^-1

Harikane et al. 2023:	We choose the threshold value of $>1000 \mathrm{km s^{-1}}$ for the
	definition of the broad line made by an AGN because such a
	high-velocity component is seen in AGNs (e.g., Vanden Berk
	et al. 2001; Reines & Volonteri 2015) but not seen in star-
	forming galaxies (typically FWHM $< 400 \text{ km s}^{-1}$, e.g., Free-
	man et al. 2019; Swinbank et al. 2019; Xu et al. 2022). This
	threshold value is also used in Stern & Laor (2012), and is
	more stringent than those used in other studies at $z \sim 0$ (e.g.,
	Reines & Volonteri 2015; Liu et al. 2019).

Galactic winds??? Or just expanding superbubble shells!? UC SANTA BARBARA

Does our argument hold for more targets?

UV absorption lines have a similar scaling relation as broad components, but with a slightly higher v_{max} ($N(v) \equiv \int n(v)dl$, $EM(v) \equiv \int n(v)^2 dl$; Xu et al. 2025) UC SANTA BARBARA

Spatially Resolved Study Using KCWI/KCRM: Kinematics

)E(

Peng et al. (in prep.)

Spatially Resolved Study Using KCWI/KCRM: Kinematics

Peng et al. (in prep.)

SB Predictions of Analytical Galactic Wind Models $\eta_{M.cl.i} = 1.0; M_{cl.i} = 10^5 M_{\odot}; \eta_E = 1.0$

Multi-phase nature of galactic winds

X-ray ($^{\sim}10^7$ K) data appears in blue Hydrogen emission (e.g., Hα; ~10⁴ K) **Bluest visible light** appears in green Infrared light appears in red

Credit: NASA/JPL-Caltech/STScI/CXC/UofA/

Thermalization Efficiency Factor: $\dot{E}_{\rm hot} = 3 \times 10^{41} \text{ erg s}^{-1} \eta_{\rm E} \frac{\rm SFR}{M_{\odot} \text{ yr}^{-1}}$ Mass Loading Factor: $\dot{M}_{\rm hot} = \eta_{\rm M} \text{ SFR}$

However, both $\eta_{\rm E}$ and $\eta_{\rm M}$ are not well-constrained by observations and simulations/theories

If the cold clouds are pressure confined by the volume-filling hot wind,

$$\dot{p}_{\rm hot} = \left(2\dot{E}_{\rm hot}\dot{M}_{\rm hot}
ight)^{1/2} \simeq 5 \ (\eta_{\rm E}\eta_{\rm M})^{1/2} \ \frac{L}{c}$$

Thompson & Heckman (2024)

Discussion & Summary

- Emission-line observations of outflowing cold clouds (27 galaxies), distinguishing
 - very-broad (VB) components (FWHM ~ 1200 km s⁻¹): galactic winds
 - broad components (FWHM ~ 260 km s⁻¹): expanding superbubble shells
- Most VB components' [OIII] 5007 luminosity come from stellar photoionization but not mechanical energy of CCSN.
- □ VB components' surface brightness ratios of [OIII] 5007 and H α can be explained by our **multi-phase** galactic wind model.
- □ The $(\eta_E \eta_M)^{1/2}$ of **VB components** are more similar to **X-ray data** compared to those of broad components and UV absorption lines.

Martin, Peng, and Li (2024)