# Molecular Cloud Evolution & (Massive) Star Formation in Galactic Dynamics

Jin Koda

Stony Brook University – State University of New York (SUNY)

Thanks to many collaborators: particularly, Akihiko Hirota (NAOJ), Fumi Egusa (U. Tokyo), Tsuyoshi Sawada (NAOJ), Kazushi Sakamoto (ASIAA)

NSF AST-2006600 & AST-2406608

### Cloud Lifecycle in Large-Scale Galactic Context



<u>Cloud lifetime</u>

<u>~5-30 Myr</u>

Form and *die* at the same location



→ All phases at all places
 → No galaxy-scale pattern

#### <u>~>100 Myr</u>

Form, move, and evolve around the disk

- $\rightarrow$  Correlate with galactic structures
- $\rightarrow$  Galaxy-scale pattern

### This Talk: Galaxy-Scale Variations in M83 (the closest MW-analog)

- The CO 2-1/1-0 ratio ( $R_{21}$ ): low  $\rightarrow$  high excitation from interarm to spiral arms
- **Cloud properties:** Unbound in interarm  $\rightarrow$  Bound in spiral arms.

#### → Molecular gas/cloud evolution synchronized with galactic dynamics







ALMA 12m+7m+TP jointly-imaged with MIRIAD



## CO(1-0) more extended: CO(2-1) more concentrated





200 400 600 (PI: Kazushi Sakamoto) K\*km/s

Koda et al. 2025

### $R_{21} = CO 2-1/1-0$ Line Ratio: Large-Scale Variations



 $R_{21} < 0.7$  in interarm regions  $\leftrightarrow R_{21} > 0.7$  in spiral arms

## Interarm $\leftrightarrow$ Arm: x2-3 changes around typical ( $n_{H2}$ , $T_{kin}$ )





## What controls the gas condition?: Feedback? Galactic Dynamics?



R<sub>21</sub> = CO 2-1/1-0 0.8 0.4 0.5 0.6 0.7 0.9

5.7x7.0 kpc<sup>2</sup>

### Separate Inside/Outside HII Regions → HII Region Mask



<u>Method</u>: HST Ha + SExtractor

<u>Detection Limit</u>:  $L_{Ha} \sim > 10^{35}$  erg/s

(The Orion Nebula ~7x10<sup>36</sup>)

Mask: enclose relatively large are around HII region

$$\begin{array}{rl} L_{H\alpha} > 10^{38} \mbox{ erg/s } \rightarrow D_{\mbox{circle}} = 200 \mbox{ pc} \\ 10^{37 \cdot 38} \mbox{ erg/s } \rightarrow & = 100 \mbox{ pc} \\ < 10^{37} \mbox{ erg/s } \rightarrow & = 50 \mbox{ pc} \end{array}$$

## $R_{21}$ : Pushed to >0.7 by Dynamics and to ~0.8-1.0 by Feedback



## $R_{21}$ : Pushed to >0.7 by Dynamics and to ~0.8-1.0 by Feedback



### $R_{21}$ : Pushed to >0.7 by Dynamics and to ~0.8-1.0 by Feedback





Molecular Cloud Evolution: 93% of CO emission identified as clouds

Massive to less massive (1) between arm and interarm (2) from the inner to outer disk

### More Massive, Denser, More Bound



Some clouds (structures) may be unbound. Scale-dependence. Should we move away from the "molecular cloud" paradigm?

## Cloud Evolutionary Sequence in Galactic Dynamics



### Caveat on Cloud Analysis: Beam Filling Factor

 $T_p=2K$  roughly separates (*likely*) resolved and (*likely*) unresolved clouds



The sequence could potentially be an artifact due to insufficient resolution. Need 20-pc resolution to resolve smallest clouds.

#### AD: Students' work

### <u>Radial increase in $\alpha_{CO}$ (Xco)</u>



Amanda Lee et al. 2024

#### <u>Radial increase in $\alpha_{CO}$ </u>

• Derived by the dust-based method



#### Explained by

• Radial variations in cloud population

### Molecular High-Velocity Clouds



Nagata et al. 2025 (ApJ, accepted; arXiv:2505.12757)





<u>10 HVCs</u> >50km/s from disk

> R~30-80 pc M~10<sup>5</sup> M<sub>sun</sub> σ<sub>V</sub>~3-20km/s

Mostly (9/10) in positive velocity
Too heavy to lift up from the disk by SNe
→ (Likely) infalling gas

#### Summary: Dynamically-Driven Molecular Gas/Cloud Evolution

- ALMA CO obs. of M83 at 40pc resolution the closest MW-analog (*d=*4.5Mpc)
- The CO 2-1/1-0 ratio (R<sub>21</sub>) shows large-scale variations Solid

The gas becomes denser/warmer from interarm to spiral arms even without (massive) star formation

- Cloud properties evolve in synch with galactic structure & dynamics Likely Less-bound in interarms → more-bound in spiral arms.
- → Molecular gas/cloud evolution synchronized with galactic dynamics (rotation timescales)



