### Star formation in the Central Molecular Zone: Theory

Mattia Sormani University of Insubria Como Lake centre for AstroPhysics (CLAP)





the European Unio



What is the CMZ?

The CMZ is a star-forming nuclear ring at the centre of a barred galaxy

#### Examples of nuclear rings

#### NGC 1097





# Phangs-just

#### NGC 1512

Lee et al. 2023



# Phangs-just

#### NGC 1300

Lee et al. 2023

#### **Milky Way**



#### Central Molecular Zone -- CMZ



N(H<sub>2</sub>): Cold Gas and Dust Battersby+2025 70 µm: Warm Dust Molinari+2011 8 μm: Warm Dust Benjamin+2003 (Spitzer)

Image courtesy of Cara Battersby

### What physical mechanism creates the ring? What is "special" about its location?

#### Lindblad resonance: when a particle encounters successive bar potential crests at the frequency of its radial oscillations



#### Spiral waves are excited at the inner Lindblad resonance (ILR) and move the gas inwards



### Nuclear ring is accumulation of gas at the inner edge of a gap around the ILR



### Analogy with gaps in Saturn's rings

### The basic physical principle is the same that explains gaps in Saturn rings (Goldreich & Tremaine 1978)



#### Gap cleared out by waves

ILR







#### Artist impression



#### Credit: Micheal Carroll, Carolyn Porco

### Analogy with protoplanetary disks

### planet



Bar "dust lanes"

In the strong bar regime, the spiral waves at the ILR are morphed into the bar "dust lanes"

### Can we see the "bar lanes" of the Milky Way?



### Bar-dominated region

CMZ

**Bar lanes** 











## These are the bar lanes of the MW! (Fux1999,Marshall+2008)





Fux 1999 Marshall et al. 2008 Sormani et al. 2018 Li et al. 2016, 2022

### Bar lanes in M31: see poster of Zixuan Feng

### Large-scale Hydrodynamical Shocks as the **Smoking-gun Evidence for a Bar in M31**

Zi-Xuan Feng<sup>1</sup>, Zhi Li<sup>2</sup>, Juntai Shen<sup>2</sup>, Ortwin Gerhard<sup>3</sup>, M. Blana<sup>3</sup>, R. P. Saglia<sup>3</sup>

[1] Shanghai Astronomical Observatory [2] Shanghai Jiao Tong University [3] Max-Planck Institute

#### **Motivation**

The formation and evolutionary history of M31 are closely related to its dynamical structures, which remain unclear due to its high inclination. Gas kinematics could provide crucial evidence for the existence of a rotating bar in M31.



A typical signature for barred galaxies is the pair of dust lanes (shocks) on the leading side of the bar.

Fig 2. Identified shock positions of [O III] (red circles) and H I (blue triangles) superposed on the optical image of M31. Solid, open, and dashed markers indicate Class I, Class II, and Class III shock features, respectively.



#### Results



**Extended Velocity Features** 

### What are these strange features?



Liszt 2006, 2008



### What are these strange features?



Liszt 2006, 2008



### What are these strange features?



- Extremely broad lined (>100km/s!)
- Localised in space
- magnetic loops (Fukui+2006,Suzuki+2015), IMBH (Oka+2017)

#### **Liszt 2006** -

Various interpretations: collisions (Fux1999, Liszt2006, Gramze+2023), footprints of giant

Liszt 2006, 2008

7



Deńse C y [kpc] Diffuse CMZ/ -2+ -1  $x \,[\mathrm{kpc}]$ 

#### Simulations reproduce EVFs as collisions



Deńse C y [kpc] Diffuse CMZ/ -2+ -1  $x \,[\mathrm{kpc}]$ 

#### Simulations reproduce EVFs as collisions





### Zoom-in observations of G5 cloud show velocity bridge as signature of extreme collision (Gramze+2023)



# However, in the MW interpretation is always challenging due to embedded perspective

### what about nearby galaxies?



### Kolcu et al. subm (PHANGS collaboration)






## Kolcu et al. subm (PHANGS collaboration)



Do these extreme collisions trigger star formation?

No evidence of star formation in G5 despite extreme collision (Enokiya et al. 2021, Gramze et al. 2023)

However, there is Sgr E...



Galactic Longitude (deg.)

Anderson et al. 2020

## Sgr E is born on the far-side bar lane

#### **Observations**



#### Simulations

Anderson et al. 2020

### born here

# Why is the CMZ asymmetric?

#### GALACTIC CENTER MOLECULAR CLOUDS. II. DISTRIBUTION AND KINEMATICS

JOHN BALLY, ANTONY A. STARK, AND ROBERT W. WILSON AT&T Bell Laboratories

> CHRISTIAN HENKEL Max-Planck-Institut für Radioastronomie Received 1986 June 16; accepted 1987 May 29

This is a study of the kinematics and distribution of molecular gas near the Galactic center, observed in a variety of millimeter-wave spectral lines. The molecular component is asymmetric with respect to the dynamical center of the Galaxy; about three-fourths of the <sup>13</sup>CO and CS emission is produced at positive longitudes and a different three-fourths of the gas is at positive velocities with respect to  $v_{LSR} = 0 \text{ km s}^{-1}$ . The velocity field of the gas is highly chaotic, with some clouds having large (>100 km s<sup>-1</sup>) departures from the velocity pattern expected from purely circular orbits; however, most of the gas (70%) lies in a thin sheet in the Galactic plane. The scale height of this sheet shows that the random velocities of the cloud centers perpendicular to the plane are comparable in magnitude to the internal velocity dispersions of the individual clouds. Although the complex nature of the velocity field and the gas distribution precludes determination of a unique rotation curve for the inner 500 pc of the Galaxy, the highest absolute velocities observed as a function of l and bsuggests that the equivalent circular velocity decreases very slowly-if at all-with decreasing l. The rotation curve varies from  $v_{rot} \approx 200 \text{ km s}^{-1}$  at  $l = 5^{\circ}$  to no less than  $v_{rot} \approx 120 \text{ km s}^{-1}$  near  $l = 0^{\circ}$ . Simple models of the mass distribution within the inner Galaxy are used to compare the observed scale height of the gas with the predicted scale height as a function of galactocentric radius. We use this comparison to estimate the galactocentric distance of various features in the maps. Some features extend far above or below the plane of the Galaxy; these objects must be in highly inclined orbits.

The edges of certain molecular features coincide with the bright radio filaments associated with the continuum arc located 0°.2 from Sgr A. Filaments that emit radio recombination lines are found to have velocities closely matching that of the adjacent molecular clouds. The continuum and line-emitting radio filaments appear to delineate different edges of dense molecular clouds. The radio filaments may be thermal and nonthermal radiation generated by powerful shocks that result from the collision of dense molecular clouds with the intercloud medium. Large departures from circular motion and motion along inclined orbits can produce the  $\Delta v \approx 50-150$  km s<sup>-1</sup> shocks required to explain the centimeter-wave emission. Subject headings: galaxies: internal motions — galaxies: nuclei — galaxies: The Galaxy interstellar: molecules

AND

#### ABSTRACT

## Distribution of dense gas



NH3 data from Longmore+2017. Courtesy of Jonathan Henshaw & Steve Longmore.

### NH3 J,K=(1,1)

## Distribution of dense gas



NH3 data from Longmore+2017. Courtesy of Jonathan Henshaw & Steve Longmore.

### NH3 J,K=(1,1)

#### Why is the CMZ asymmetric?

John: because of stellar feedback

But is stellar feedback really necessary? Can you make the asymmetry without it?

Apparently no reason to expect asymmetries according to "pure" gas dynamics. Early simulations seemed to confirm this (e.g.Jenkins&Binney94, Englmaier&Gerhard99, Rodriguez-Fernandez&Combes2008)











# is asymmetric?

#### Short answer: it's real and it's called wiggle instability (Wada & Koda 2004) Confirmed by linear analysis (Kim+14; Sormani+17; Mandowara+22)







ormani et al. 2018



Star formation in the CMZ



#### **Schmidt-Kennicutt relation**

The CMZ is forming a lot of stars (~0.1 Msun/yr), but less than expected based on the amount of "dense" gas (Immer+2012, Longmore+2013, Kruijssen+2014, Barnes+2017)

#### **Gao-Solomon-Lada relation**

# What happens when star formation continues for several Gyr in the CMZ?

# Stars accumulate and build up the Nuclear Stellar Disc

## The Nuclear Stellar Disc



- M ~ 10^9 Msun
- Radius ~ 120pc, scaleheight~45pc
- Dominates gravitational potential in the range 30pc<R<300pc
- Could be non-axisymmetric (secondary bar)

#### The NSD overlaps with gas in the Central Molecular Zone





**Figure 1.** Overview of APOGEE stars (colored dots) near the Galactic center in Galactic longitude *l* and latitude *b*. Colors represent the mean line-of-sight velocity  $v_{los}$  of each star and its closest 29 neighbors. Note the division into plates/fields and the clear dipole structure in  $v_{los}$  around the Galactic center.

Schoenrich et al. 2015

## Evolution of the NSD

#### **Inside-out formation scenario** (Bittner et al. 2020): Nuclear discs are built up from a series of gaseous rings that grow in radius over time



#### In other words: the CMZ ring radius increases over Gyrs!

#### Inside-out formation scenario is supported by simulations



#### Inside-out formation scenario is supported by simulations



#### Evidence for inside-out scenario in the MW: Star formation history as a function of distance *along* the line of sight



Nogueras-Lara et al. 2023

Simulations suggest that a substantial fraction of the NSD forms in the ~1 Gyr after bar formation (Baba & Kawata 2020, Cole+14)

→ NSD star formation history can be used to estimate age of the Galactic bar!

#### time of bar formation



## Star formation history of NSD from Mira variables suggests that bar is 8 Gyr old



#### **Observations SFH**

#### time of bar formation



#### **Simulation SFH**

#### time of bar formation

## Inflow

How is gas transported from the Galactic disc to the central black hole Sgr A\*?

### The inflow happens in a sequence of steps

Galactic disc

Central Molecular Zone

Circum-nuclear disc

Area of influence of SgrA\*



# **Bar-driven inflow** $R = 3kpc \rightarrow 150pc$

# Bar lanes are like two "rivers" of gas accreting onto the CMZ


## Bar-dominated region

CMZ

**Bar lanes** 

### This can be used to estimate *accretion rate* onto CMZ directly from the data



### Sormani & Barnes 2019

# Nuclear inflow: $R = 150 \text{ pc} \rightarrow \text{few pc}$

### **Two simulations**



- No gas self-gravity
- No star formation  $\bullet$

Simulations are identical (same external bar potential, ISM model) except:

- Gas self-gravity ullet
- Star formation & SN feedback ullet



|                 | <ul><li>No gas self-gravity</li><li>No star formation</li></ul> | <ul> <li>Gas self-gravity</li> <li>Star formation &amp; SN feedback</li> </ul> |
|-----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Bar inflow:     | ~1.0 Msun/yr                                                    | ~1.0 Msun/yr                                                                   |
| Nuclear inflow: | 0                                                               | ~0.03 Msun/yr                                                                  |

### **Two simulations**

Simulations are identical (same external bar potential, ISM model) except:



- No gas self-gravity  $\bullet$
- No star formation  $\bullet$

~1.0 Msun/ **Bar inflow:** Nuclear inflow: 0

Supernova feedback can drive ~0.03 Msun/yr

### **Two simulations**

Simulations are identical (same external bar potential, ISM model) except:

| /   | <ul> <li>Gas self-gravity</li> <li>Star formation &amp; SN feedback</li> </ul> |
|-----|--------------------------------------------------------------------------------|
| ′yr | ~1.0 Msun/yr                                                                   |
|     | ~0.03 Msun/yr                                                                  |

### Repeat

### INO MAGNETIC HEIOS







### ime

### etic fields



### -0.1 Msun/yr

### Summary of possible nuclear inflow mechanisms

- Stellar feedback (supernova, winds, radiation)
- Magnetohydrodynamic turbulence
- External perturbations (e.g. passing globular clusters)
- Possible presence of nuclear bar (e.g. Alard 2001, Gerhard & Martinez-Valpuesta 2012)

(~0.03 Msun/yr, ?, ?)

(0.01-0.1 Msun/yr)

### ACES WP4 & ERC project Galflow: developing simulations to understand nuclear inflow





## Take-home messages

- CMZ is a star-forming ring similar to those in nearby barred galaxies
- CMZ is accumulation of gas at the inner edge of a gap around the ILR
- CMZ is asymmetric because 1) bar flow intrinsically unsteady + 2) stellar feedback, with 1 and 2 in undetermined proportions
- Extreme collisions happen in the bar dust lanes, but the SF is not understood
- Inflow from Galactic disc to CMZ is "understood" (bar), from CMZ inwards is work in progress (ERC GalFlow & ACES WP4)
- We are beginning to understand SF history & secular evolution of CMZ/NSD

## Thank You!



Credit: R.Hut/Nasa

# I DE MEIKY MEN

Sgr A\*

CMZ (R=120 pc)

Region dominated by the bar (R=4 kpc)

Sun (R=8 kpc)



1.Bar potential is a much stronger perturbation than Saturn's satellites 2. Sound speed is negligibly small in Saturn's problem, but not for us 3.Self-gravity is "negligible" for us, but not in Saturn's problem

Raw result from observations: (Sormani & Barnes 2019)

After correcting for overshooting fraction (Hatchfield et al 2021)

After correcting for lower X-CO factor (Gramze et al. 2023)

|                        | ~2.7 Msun/yr    |
|------------------------|-----------------|
| on                     | ~0.8 Msun/yr    |
| in the Galactic centre | 0.2-0.8 Msun/yr |

### ACES WP4 & ERC project Galflow: developing simulations to understand nuclear inflow



