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Clustering of star formation & feedback determines galaxy properties
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Clustering of star formation & feedback determines galaxy properties

varying FB model
all else identical

1 20 usss(iniy| 1p 4a||9)
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Clustering of star formation & feedback determines galaxy properties

varying FB model
all else identical
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Modelling feedback is complex due to combination of mechanisms
+ Stellar winds

4 Supernovae

4 Photoionisation

4 Radiation pressure

4 Protostellar outflows
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Modelling feedback is complex due to combination of mechanisms

4 Stellar winds

4 Radiation pressure

4 Protostellar outflows
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Modelling feedback is complex due to combination of mechanisms
.

4 Stellar winds

4 Supernovae

4 Photoionisation

4 Radiation pressure

4 Protostellar outflows

/ HNCO(1-0)
- Peak Intensity
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Modelling feedback is complex due to combination of mechanisms
'

4 Stellar winds
4 Supernovae
4 Photoionisation

4 Radiation pressure

4 Protostellar outflows
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Idea: observations of timescales for molecular cloud destruction

constrain effective feedback momentum/energy input

- Peak Intensity
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Observations help constrain feedback by measuring underlying timescales



(€

The Empirically-Motivated Physics simulations of galaxy evolution

J. M. Diederik Kruijssen — COOL Research DAO

Spatially-resolved SF relation in NGC300: vigorous evolutionary cycling

log]()(xmol/ZSFR) [G}l]

Kruijssen et al. (2019)
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Spatially-resolved SF relation quantifies GMC lifecycle

“Uncertainty principle for star formation”; described in Kruijssen & Longmore 2014; Kruijssen+ 2018

Relative change of gas-to-SFR flux ratio
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Enables simultaneous measurement of quantities describing SF & FB
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Spatially-resolved SF relation fundamentally rules out “long” GMC lifetimes

“Uncertainty principle for star formation”; described in Kruijssen & Longmore 2014; Kruijssen+ 2018
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Universal de-correlation: ubiquitous GMC destruction by pre-SN feedback

Kim+ 2022
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These measurements can motivate a subgrid model for pre-SN feedback
Keller, Kruijssen & Chevance 2022

4+ Specific terminal momentum from feedback timescale, cloud radius, and SFE

A

p(tFB):a

((1_€SF>rcl)
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These measurements can motivate a subgrid model for pre-SN feedback
Keller, Kruijssen & Chevance 2022

4+ Injected momentum as a function of time follows from self-similarity
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These measurements can motivate a subgrid model for pre-SN feedback
Keller, Kruijssen & Chevance 2022

4+ Injected momentum as a function of time follows from self-similarity
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Empirically-motivated FB reproduces observed de-correlation in simulations

Keller, Kruijssen & Chevance 2022

4 Reprod uces the Mechanical supernova feedback only + Empirically-Motivated Feedback

observed GMC lifecycle
by construction

4+ Changes galaxy-scale
baryon cycle
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Isolated galaxy with fully emplrlcal pre-supernova feedback
Keller, Kruijssen & Chevance 2022
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Isolated galaxy with fully emplrlcal pre-supernova feedback
Keller, Kruijssen & Chevance 2022
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Isolated galaxy with fully emplrlcal pre-supernova feedback
Keller, Kruijssen & Chevance 2022

-

et

~4— SN Only

a=0.5

’ —4— a=1.0

101
Separation 7 (kpc) = 000 Myr




Isolated galaxy with fully emplrlcal pre-supernova feedback
Keller, Kruijssen & Chevance 2022
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Applied in cosmological context: significant change in gas mass histories

Kruijssen+ in prep.
Keller+ in prep.

4+ Empirical feedback does not regulate SF by blowing gas out of galaxy globally,
but locally by disrupting GMCs and putting the gas in a non-star-forming state
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108 E

SN Only

—— SN +

HI Gas

-== Stars

EMF

10’

Time (Gyr)

10

12

lines: average
of 10 simulations



<© The Empirically-Motivated Physics simulations of galaxy evolution

J. M. Diederik Kruijssen — COOL Research DAO

Applied in cosmological context: significant change in gas mass histories
Kruijssen+ in prep.
Keller+ in prep.

4+ Empirical feedback does not regulate SF by blowing gas out of galaxy globally,
but locally by disrupting GMCs and putting the gas in a non-star-forming state

lines: average
of 10 simulations
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Applied in cosmological context: significant change in gas mass histories
Kruijssen+ in prep.
Keller+ in prep.

4+ Empirical feedback does not regulate SF by blowing gas out of galaxy globally,
but locally by disrupting GMCs and putting the gas in a non-star-forming state

lines: average
of 10 simulations

—— SN Only
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— HI Gas
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Phase of the excess gas depend on moment in cosmic history
Kruijssen+ in prep.
Keller+ in prep.

4+ Excess gas mass in local Universe should be mostly HI => SKA

4+ Excess gas mass at z ~ 2 should be mostly CO-bright => ALMA

Big Bang today
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How does this generalise to the environments where cosmic SFR peaked?

log v (M year~' Mpc3)
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massive (105 Mo)
* compact (~5 pc)

How did globular clusters form?
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How did globular clusters form?
Kruijssen 2025 in press, arXiv:2501.16438

The formation of globular clusters

J M Diederik Kruijssen®™" (), ®Department of Aerospace and Geodesy, Chair of Remote Sensing Technology, Technical University
of Munich, Munich, Germany; °Cosmic Origins Of Life (COOL) Research DAQO

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Abstract

Globular clusters (GCs) are among the oldest and most luminous stellar systems in the Universe, offering unique insights
into galaxy formation and evolution. While the physical processes behind their origin have long remained elusive, major
theoretical and observational developments in the past decade have led to a new understanding of GCs as the natural
outcome of high-pressure star formation in high-redshift galaxies. This review synthesizes recent advancements in our
understanding of GC formation and aims to provide a comprehensive point of reference for leveraging the revolutionary
capabilities of the current and upcoming generation of telescopes. The latest generation of GC models combines our
understanding of their formation and destruction with advanced galaxy formation simulations. The next decade will provide
the first-ever opportunity to test such models across their full evolutionary history, from GC formation at high redshift as seen
with the James Webb Telescope to snapshots of GC demographics at intermediate redshifts obtained with 30 m-class
telescopes, and eventually to the well-characterized GC populations observed at the present day. We identify the major
questions that we should expect to address this way.
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Current paradigm: GCs are natural outcome of high-pressure SF at high z
Kruijssen 2025 in press, arXiv:2501.16438
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The co-formation of galaxies & GC populations: the E-MOSAICS project
Pfeffer+ 2018; Kruijssen+ 2019d

E-MOSAICS: MOdelling Star cluster system Assembly In Cosmological Simulations
in the context of EAGLE

Simulation by Joel Pfeffer, Diederik Kruijssen, Rob Crain, Nate Bastian
Gas density and star cluster metallicity

4+ Couple Kruijssen+11,12
*“MOSAICS? cluster
formation/evolution
models to the EAGLE
simulations gfgiff;oﬁ%w

4 First time that the
formation and evolution
of the entire cluster
population is modelled
self-consistently across
cosmic history
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The co-formation of galaxies & GC populations: the E-MOSAICS project
Pfeffer+ 2018; Kruijssen+ 2019d
4+ 25 cosmological zoom-in simulations of Milky Way-mass galaxies + satellites

4+ >200 of simulations run with different physical ingredients

4 343 Mpc3 periodic volume: 80 MWs, 1 Fornax Cluster

Simulation by Joel Pfeffer, Di
Gas density and star cluster metallicity
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E-MOSAICS: two main results
Pfeffer+ 2018; Kruijssen+ 2019d

4+ GC properties today follow naturally from regular cluster formation at high z

4 GCs can be used to reconstruct galaxy formation and assembly



<© The Empirically-Motivated Physics simulations of galaxy evolution

J. M. Diederik Kruijssen — COOL Research DAO

E-MOSAICS: GCs formed as products of regular cluster formation at high z
Pfeffer+2018; Kruijssen+2019d

4+ Simulations can be used to predict where and how globular clusters formed

Keller+ 2020
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With gravitational lensing proto-GCs can be observed at high resolution

Lensed Galaxy
Redshift (z): 2.6 ’

-

Lensed Galaxy ,l.
Redshift (z): 10.2

\
»

" Mirrored Star Clusters
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Adamo+ 2024; also see e.g. Vanzella+ 2017a,b; 2022a,b; 2023; Mowla+ 2022; 2024; Claeyssens+ 2023; Fujimoto+ 2024
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Predicted masses of brightest (proto-)GCs in a galaxy versus redshift

Pfeffer+ 2025
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Do these proto-GCs survive until the present day?
Pfeffer+ 2018

4+ Cluster mass loss dominated by the graininess of the gravitational potential
on scales of GMCs — requires on-the-fly modelling + realistic ISM
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E-MOSAICS has been quite successful, but (!):
accurate ISM model is crucial to get a realistic cluster population

4+ The EAGLE galaxy formation model does not include a cold ISM

4+ E-MOSAICS underpredicts cluster disruption — must get baryonic physics right
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E-MOSAICS has been quite successful, but (!):
accurate ISM model is crucial to get a realistic cluster population

4+ The EAGLE galaxy formation model does not include a cold ISM

4+ E-MOSAICS underpredicts cluster disruption — must get baryonic physics right

104: T L | T L | T T T T
F -$- Milky Way GCs 3
—}— E-MOSAICS (no cold ISM) |

i s MR | s MR | s MR | s L .§
B 103 10 10° 106 107
' Cluster mass [Mg]



(€

The Empirically-Motivated Physics simulations of galaxy evolution
J. M. Diederik Kruijssen — COOL Research DAO

The EMP (Empirically-Motivated Physics) cosmological zoom-in simulations

Kruijssen+ in prep.

of galaxy formation and evolution Keller+ in prep.

4+ Multi-phase ISM and abundance tracking of 36 elements + their isotopes

Reina-Campos, Keller, Kruijssen+ 2022

4+ SFE model: constant or depending on cloud dynamics
Gensior+ 2020, 2021

4+ Empirically-motivated (early) feedback model based on
observed cloud lifecycle (+ individual supernovae)
Keller, Kruijssen & Chevance 2022

4+ Sub-grid model for star cluster formation and disruption

Kruijssen+ 2011; Pfeffer, Kruijssen+ 2018; Reina-Campos, Keller, Kruijssen+ 2022

4+ On a moving mesh (Arepo)
Springel 2010
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Resolving the cold ISM with EMP is essential for modelling GC population
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Resolving the cold ISM with EMP is essential for modelling GC population
4+ Thanks to cold ISM, tidal shocks disrupt GCs sufficiently quickly

4+ EMP reproduces the shape of the GC mass function
for the first time in a cosmological simulation
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Resolving the cold ISM with EMP is essential for modelling GC population
4+ Thanks to cold ISM, tidal shocks disrupt GCs sufficiently quickly

4+ EMP reproduces the shape of the GC mass function
for the first time in a cosmological simulation
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Major open questions: quite some
Kruijssen 2025 in press, arXiv:2501.16438

q ' derctandi
under

1. Improve our fi of star cluster formation and destruction. The physical descriptions of these processes
have been advancing, but these must reach the point where they become an unambiguous basis on which to build models of GC
formation and evolution. The big revolution will be to think in terms of scale-free hierarchies rather than in terms of categorizations.
Key questions that we will then be able to address are:

a. What are the typical age spreads of star clusters, and do these vary with the cluster mass?

b. How can we best exclude gravitationally unbound clusters from extragalactic cluster samples, to obtain a more robust CFE?

c. How can we accurately infer the low- and high-mass truncation masses of the ICMF, given the observational challenges in terms of
completeness and low-number statistics, respectively?

d. How can we explain the origin of light element abundance variations within GCs in a way that is consistent with our understanding
of star formation and stellar feedback, e.g. without invoking multiple generations of star formation?

e. Which physics set the comparatively poorly characterized (initial and final) cluster mass-radius relation?
How can the infinite number of possible tidal histories be standardized to a single framework that enables their systematic study?

g. How can we empirically quantify the relative contributions of the two main cluster destruction mechanisms (tidal shocks and tidal
evaporation) to the mass loss experienced by clusters throughout cosmic history?

2. Construct a comprehensive theory for the formation and evolution of GCs. How do the physics of star cluster formation and
destruction in the context of galaxy formation and evolution explain the existence of the observed GC population? This is an absolute
prerequisite for considering GC formation a solved problem. Key questions that we should address are:

a. What fraction of GCs did not form as the product of ‘normal’ cluster formation in high-redshift galaxies?
b. Are there other formation mechanisms and if so what are they?
c. What physical processes enable the formation of massive GCs with metallicities below the metallicity floor, i.e. [Fe/H] < —2.5?

d. If multiple formation mechanisms generated the current GC population, can GC ages measured at high redshift distinguish these?

e

f.

What was the shape of the initial GC mass function?
. How did proto-GCs escape the destructive environment of their host galaxy disk?
g. What fraction of GCs was destroyed by dynamical friction?

3. Obtain a complete census of proto-GCs demographics at high redshift, and of the subsequent emergence of the GC population.
This is the step change enabled by the next generation of telescopes, which will allow us to obtain statistically representative samples of
(proto-)GCs across the redshift range needed to achieve an end-to-end understanding of GC formation. This will result in a synthesis of
the GC population across cosmic time, with potential major implications for star formation, black holes, and gravitational waves. Key
questions that we should address are:

a. Given our current understanding of GC formation, can we predict the demographics of the population of (proto-)GCs across the
redshift range that will be seen by JWST, Euclid, and 30m class telescopes such as the ELT?

b. At what redshift did the formation rate of proto-GCs peak?

c. At what redshift did the formation rate of GCs that eventually survive peak?

d. Can the unusual chemical properties of multiple populations in GCs generate unusual abundance patterns in high-redshift galaxies,
possibly aided by a high CFE or an ICMF with an elevated minimum cluster mass?

e. How many times more massive were GCs at birth, and how many proto-GCs were there that did not survive to become GCs?

f. At what redshift were the demographics of the current GC population in place, and how does this depend on the host galaxy mass
and assembly history?

g. Areinitial (and final) GC demographics affected by cosmic variance, i.e. do we observe the same statistics if we consider fields that
fall outside of each others’ light cones?

4. How do GCs trace the assembly histories of their host galaxies? This major step is unlocked by a comprehensive theory for the
formation and evolution of GCs, and our current understanding has enabled the first successful applications of GCs as tracers of galaxy
assembly in the Milky Way. The big next step is to industrialize this potential and use GCs to reconstruct the merger trees of external
galaxies and perform a fundamental test of cold dark matter cosmology. Key questions that we should address are:

a. How can we further improve the accuracy of GC age measurements from integrated light?
b. What are the key observables that we need to trace a galaxy’s growth and merger history using its GCs?
c. What are the merger trees of nearby galaxies, as traced by their GCs, as a function of galaxy mass and galaxy clustering?
d. How do these GC-inferred merger trees compare to the predictions of cold dark matter cosmology?
This is a highly ambitious set of questions, but it is certainly not beyond the realm of possibility to answer them over the next 10-20 years.
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Empirically-motivated feedback controls the formation of GCs and galaxies

4+ Resolved sub-mm observations of galaxies yield the
timescales that govern the molecular cloud lifecycle,
solving one of the biggest problems in resolved SF

4+ The SF-FB cycle in galaxies is fast and inefficient:
cold, star-forming gas is dispersed gently by pre-SN FB,
changing how simulated galaxies grow over a Hubble time

4 Globular clusters != archaeology; GCs are natural
outcomes of high-z star/cluster formation in normal
disc galaxies, the physics of which can now be resolved

4 Globular cluster demographics at z = 0 are set by the
structure of the interstellar medium, which itself is shaped
by stellar feedback, which can be expressed empirically

Big step: abstracting away the BFL into a single empirical model
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Empirically-motivated feedback controls the formation of GCs and galaxies

4+ Resolved sub-mm observations of galaxies yield the
timescales that govern the molecular cloud lifecycle,
solving one of the biggest problems in resolved SF

4+ The SF-FB cycle in galaxies is fast and inefficient:
cold, star-forming gas is dispersed gently by pre-SN FB,
changing how simulated galaxies grow over a Hubble time

4 Globular clusters != archaeology; GCs are natural
outcomes of high-z star/cluster formation in normal
disc galaxies, the physics of which can now be resolved
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Big step: abstracting away the BFL into a single empirical model



