

Unveiling the Thermal Structure and Super-Solar Nitrogen Abundance in the Milky Way's CGM

Anjali Gupta

Columbus State Community College

Ohio State University

Collaborators: S. Mathur, J. Kingsbury, S. Das, Y. Krongold

Star Formation, Stellar Feedback, and the Ecology of Galaxies

The Circumgalactic Medium (CGM)

The CGM is now recognized as a **key regulator** of galaxy evolution: it's where galaxies **gain**, **store**, and **lose** their baryons and metals.

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Milky Way CGM in Absorption and Emission

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Massive, Extended, hot Galactic halo

Temperature ~ 2 X 10⁶ K

Z = 0.3 Z_{solar}

(X/O) = Solar X = N, Ne, Fe, Mg

Courtesy: Chandra press office/Gupta et al.

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Discovery of a hot ($T = 10^7 K$) component

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Non-solar mixture

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Milky Way CGM emission around the same sightline

 $T_{warm-hot} = 1.8-2.6 \times 10^{6} \text{ K}$ $T_{hot} = 4.8-8.3 \times 10^{6} \text{ K}$

Das, Mathur, Gupta+2019c

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Suzaku Observations: Super-virial temperature

Star Formation, Stellar Feedback, and the Ecology of Galaxies

eROSITA First All-Sky Survey

Predehl et al. 2020, Nature, 588, 7837

eROSITA First All-Sky Survey

False-colour map of extended emission detected by eROSITA in the 0.6–1.0-keV range from **Predehl et al. 2020, Nature, 588, 7837**

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Our Recent Suzaku Survey: The Galactic Bubbles and the Surrounding Halo

- **O** Galactic Bubbles Sightlines = 150
- Surrounding Halo Sightlines = 80

Gupta et al. 2023, Nature Astronomy, 7, 799-804

Soft Diffuse X-ray Background

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Milky-Way (MW) Halo/Bubbles Thermal Models

Gupta et al. 2023, Nature Astronomy, 7, 799-804

F-test probability map: Hot Thermal Component

Galactic Bubbles Sightlines >99.99% in 55 sightlines >90.00% in 80 sightlines

Outside Bubbles Sightlines
➢ >99.0% in 26 sightlines

> >90:0% in 51 sightlines

Gupta et al. 2023, Nature Astronomy, 7, 799-804

Super-solar abundance of Nitrogen-to-Oxygen (N/O)

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Few Bubbles sightlines: Enhanced Ne/O and Mg/O

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Shadow Observations

Gupta et al. 2025 (in-review)

Star Formation, Stellar Feedback, and the Ecology of Galaxies

Suzaku Shadow Observations:

Gupta et al. 2025 (in-review)

Shadow Observations

Gupta et al. 2025 (in-review)

Results: Suzaku all sky survey + Shadow Obs.

- 1. Detection of Super-virial temperature phase of CGM all over sky confirmed by HaloSat (Bluem et al. 2022) and eROSITA (Ponti et al. 2023) observations
- 2. Toward few Galactic bubbles sightlines, there is evidence of super-solar Neon and Magnesium Ne/O = 2.1 ± 0.2 solar (average, 10 sightlines)

 $Mg/O = 3.6 \pm 1.4$ solar (2 sightlines)

3. Overabundance of Nitrogen is widespread all over the sky

N/O = 3.2 ± 0.2 Solar (Bubbles Region)

N/O = 4.3 ± 0.5 Solar (Outer Halo)

Enhanced N/O --> tracer of Intermediate-Mass Stars Feedback

- **Nitrogen** is primarily produced in **intermediate-mass stars** through secondary nucleosynthesis (in **CNO cycle**), released via **AGB winds** on Gyr timescale.
- Therefore, an enhanced N/O ratio pointing to a significant contribution of older stellar populations to the CGM enrichment, particularly from AGB stars.

Ne/O and Mg/O excesses -trace Massive Stars Feedback

- Neon and magnesium are α -elements, primarily produced in massive stars and released via core-collapse supernovae.
- The detection of Ne/O and Mg/O enhancement along few sightlines intersecting the eROSITA bubbles suggests localized, possibly recent feedback activity tied to massive star winds or past nuclear outflows.

Abundance Patterns and Interpretation

Observation

Widespread Super-solar N/O

Interpretation

Well-mixed nitrogen from AGB stars throughout the CGM.

Super-solar Ne/O & Mg/O in bubbles

Recent, energetic feedback from massive star supernovae or AGN outflows enriched in alpha elements (Ne, Mg), heating and ejecting material into the bubbles.

Layered Feedback in the Milky-way CGM: N/O, Ne/O and Mg/O as Chemical Chronometers

- The contrast between widespread elevated N/O and localized Ne/O, Mg/O excesses paints a picture of a chemically stratified CGM.
- Nitrogen has had time to distribute uniformly through slow winds or fountains, whereas α-elements may still trace their feedback origin points, especially in association with structures like the eROSITA or Fermi Bubbles.

X-ray emission maps from our Suzaku survey: Warm-Hot Virial Temperature Component

Gupta et al. 2023, Nature Astronomy, 7, 799-804

X-ray emission maps from our Suzaku survey: Hot Super Virial-Temperature Component

Gupta et al. 2023, Nature Astronomy, 7, 799-804

eROSITA First All-Sky Survey

Figures from Predehl et al. 2020, Nature, 588, 7837

 $E_{\rm th} \approx 1.3 \times 10_{56} \,\mathrm{erg.}$

Revised Model of Milky-way CGM X-ray Emission

Galactic Absorbing Disk

Figure Not Drawn to Scale