Unveiling the Extreme Conditions of Star Formation in the CMZ with JWST-NIRCam

Rubén Fedriani

Samuel Crowe, Jonathan C. Tan, Alva Kinman, Yichen Zhang, Morten Andersen, Lucía Bravo Ferres, Francisco Nogueras-Lara, Rainer Schödel, John Bally, Yu Cheng, Adam Ginsburg, Yao-Lun Yang, Sarah Kendrew, Joseph Armstrong, Chi-Yan Law, and Zhi-Yun Li

INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA

EXCELENCIA **SEVERO** OCHOA

Credit: NASA, ESA, CSA, STScI, SARAO S. Crowe (UVA), J. Bally (CU) R. Fedriani (IAA-CSIC), I. Heywood (Oxford)

Ballyfest - 29th May 2025

Apache Point Observatory

Cep A: $J(1.2 \mu m)$, $H(1.6 \mu m)$, $H_2(2.12 \mu m)$

Motivation: Star Formation in a nutshell DIFFUSE CLOUD

SUPERNOVAE INJECT HEAVY ELEMENTS

If M > 8 M $_{\odot}$

STELLAR SYSTEM

DENSE CLOUD

STAR AND PLANET FORMATION

Motivation: Star Formation in a nutshell

Ray et al. (2023)

See, e.g., the zillion of John's papers and Bally (2016)

Motivation: Star Formation in a nutshell

John Bally: "Give me an accreting, magnetised, rotating object, and I'll give you its associated outflow"

5000 au

Ray et al. (2023)

See, e.g., the zillion of John's papers and Bally (2016)

Welcome to the Galactic Center!

~ 50 pc

	Sp	pectral index	
-1.8	-1.0	0	1.(

Welcome to the Galactic Center!

SNR G0.9+0.1

Sgr B1

Sgr B2

Sgr D SNR

~ 50 pc

Sgr C

SNR G359.1-0.5

Welcome to the Galactic Center!

SNR G0.9+0.1

Sgr B2

Sgr D SNR

~ 50 pc

Spectral index				
-1.8	-1.0	0	1.	

SNR G359.1-0.5

SNR G0.9+0.1

Sgr B1

Sgr B2

Sgr D SNR

~ 50 pc

	Spe	ctral index	
-1.8	-1.0	0	1.0

Sgr A

SNR G359.1-0.5

Credit: NASA, ESA, CSA, STScI, SARAO S. Crowe (UVA), J. Bally (CU) R. Fedriani (IAA-CSIC), I. Heywood (Oxford)

Angular resolution from 0.03" to 0.15"

Angular resolution from 0.03" to 0.15"

Angular resolution from 0.03" to 0.15"

F470N-cont (H_2)

F405N-cont (Br α)

F470N-cont (H_2)

F405N-cont (Br α)

F470N-cont (*H*₂)

F405N-cont (Br α)

ALMA 1.3mm (Lu et al. 2021)

F470N-cont (*H*₂)

F405N-cont (Br α)

ALMA 1.3mm (Lu et al. 2021)

F470N-cont (*H*₂)

F405N-cont (Br α)

ALMA 1.3mm (Lu et al. 2021)

Spectra for H₂ emission lines

Kendrew, et al. (2013)

Spectra for H₂ emission lines

Kendrew, et al. (2013)

Spectra for H₂ emission lines

Kendrew, et al. (2013)

0

 \bigcirc

Kendrew, et al. (2013)

Initially thought to be quiescent (i.e. no much star formation)

(4)

 \bigcirc

 \bigcirc

But there are >80 outflow knots and >100 mm cores (i.e. plenty of star formation!!)

٧

 \bigcirc

Kendrew, et al. (2013)

Initially thought to be quiescent (i.e. no much star formation)

(4)

 \bigcirc

 \bigcirc

But there are >80 outflow knots and >100 mm cores (i.e. plenty of star formation!!)

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

F162M (MJv/sr) 1.6 µm

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

White crosses are ALMA band 6 (1.3 mm) peak emission for the two massive protostars (Lu et al. 2019a)

Fedriani, et al. (2023a) Crowe, et al. (2025)

Consistent with Keplerian rotation derived mass $\sim 25-35 \ \mathrm{M}_{\odot}$

Lu, et al. (2022)

Fedriani, et al. (2023a)

F470N-cont (H_2) F405N-cont ($Br\alpha$) ALMA 1.3mm

F470N-cont (H₂) F405N-cont (Br α) ALMA 1.3mm

F405N-cont (Br α) F470N-cont (H_2) ALMA 1.3mm

Match with VLA 6cm emission from Lu et al. (2019a)

JWST+ALMA reveal shocks, jets, and cores throughout the SgrC cloud

Green circles are knots identified in the H_2 and $Br\alpha$ tracers

Background image SiO 5-4, which is also an outflow tracer (Lu et al. 2021)

JWST+ALMA reveal shocks, jets, and cores throughout the SgrC cloud

Green circles are knots identified in the H_2 and $Br\alpha$ tracers

Background image SiO 5-4, which is also an outflow tracer (Lu et al. 2021)

Outflow tracers in JWST and ALMA are strongly correlated

JWST+ALMA reveal shocks, jets, and cores throughout the SgrC cloud

Green circles are knots identified in the H_2 and $Br\alpha$ tracers

Background image SiO 5-4, which is also an outflow tracer (Lu et al. 2021)

Outflow tracers in JWST and ALMA are strongly correlated

Conclusion: SgrC cloud is a clear stellar nursery!

JWST+ALMA reveal shocks, jets, and cores throughout the SgrC cloud

F470N-cont (H_2) F405N-cont (Br α) Anin protostars

ALMA Band 6 SiO 5-4 blueshifted (-80 to -51 km/s)

ALMA Band 6 SiO 5-4 redshifted (-48 to -25 km/s)

IRAC2 4.5μ m

ALMA 3mm (ACES Survey)

ALMA 3mm (ACES Survey)

ALMA 3mm (ACES Survey)

Lu, et al. (2019a)

ALMA 3mm (ACES Survey)

Lu, et al. (2019a)

ALMA 3mm (ACES Survey)

SED-fitted mass

 $\sim 8 \, \mathrm{M}_{\odot}$

Conclusions

Star formation at the SgrC cloud has been studied, revealing for the first time the outflow cones in the IR for the massive protostars

Conclusions

Star formation at the SgrC cloud has been studied, revealing for the first time the outflow cones in the IR for the massive protostars

A new star-forming region at 1' to the south of SgrC main has been discovered via its outflow activity

Conclusions

Star formation at the SgrC cloud has been studied, revealing for the first time the outflow cones in the IR for the massive protostars

Conclusions

A new star-forming region at 1' to the south of SgrC main has been discovered via its outflow activity

The star formation in SgrC at the CMZ seems to proceed similarly as in the rest of the galaxy

Thanks!

Credit: NASA, ESA, CSA, STScI, SARAO S. Crowe (UVA), J. Bally (CU) R. Fedriani (IAA-CSIC), I. Heywood (Oxford)

