


UV feedback in stellar clusters: photo-evaporation
©f planet forming disks and proplyds (and outflows).
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Feedback (esp. radiation) from massive stars affects planet-
forming disks by heating and photoevaporating them.

ALMA Partnership



Photoevaporating protoplanetary disks (proplyds) are direct
evidence of external photoevaporation of disks.

BALLY ET AL. 2005
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Fic. 1.—ACS F658N image of the giant proplyd 181—-826 showing the silhouette disk, axial nebula, and rings surrounding the disk axis.
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Photoevaporating protoplanetary disks (proplyds) are direct
evidence of external photoevaporation of disks.

BALLY ET AL. 2005 Vol. 129 358 BALLY ET AL. Vol. 129
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Fic. 2.—ACS F658N image showing the proplyd 181-826 and the two candidate shocks in the HH 540 counterflow, HH 540 N1 and HH 540 N2.

Fic. 1.—ACS F658N image of the giant proplyd 181—-826 showing the silhouette disk, axial nebula, and rings surrounding the disk axis.



UV radiation from high-mass stars illuminated everything in
the vicinity — disks, globules, outflows...

External illumination to measure

all of the mass in the outflow?

Reipurth, Bally, et al. 1998
Bally & Reipurth 2001
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NASA, ESA, M. Robberto (STScl/ESA), the Hubble Space Telescope Orion TreaSury Project Team and L. Ricci (ESO) Bally et al. 2006




Most stars form near high-mass stars that will illuminate and
evaporate the planet-forming disks around nearby low-mass stars.
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Feedback (esp. radiation) from massive stars affects planet-
forming disks by heating and photoevaporating them.

1. the timescale for planet formation

- see Sam Millstone’s poster

makeagif.com
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Feedback (esp. radiation) from massive stars affects planet-
forming disks by heating and photoevaporating them.

1. the timescale for planet formation

2. the ingredients for terrestrial planets

ALMA Partnership



Feedback (esp. radiation) from massive stars affects planet-
forming disks by heating and photoevaporating them.
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2. the ingredients for terrestrial planets
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Berné et al. 2023
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Xuel has all the elements to make Earth-like planets
despite living in an H Il region more extreme than Orion.

NGC6357 .-

1/15 disks in NGC 6357 observed with MIRI

ESO/VVV Survey/Digitized Sky Survey 2/D. Minniti. Acknowledgement: Ignacio Toledo Ramirez-Tannus et al. 2023



Xuel has all the elements to make Earth-like planets
despite living in an H Il region more extreme than Orion.
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Feedback (esp. radiation) from massive stars affects planet-
forming disks by heating and photoevaporating them.

1. the timescale for planet formation
2. the ingredients for terrestrial planets

3. how the ecosystem evolves, thus
regulating exoplanet demographics

ALMA Partnership
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Shielding time has a strong impact on the final mass and
orbital radii of single planets (pebble accretion models).

cluster age, Myr

Qiao et al. 2022
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Most planet-forming disks will be affected
by UV from nearby high-mass stars.
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—2.5 —2.0 —-1.5 —1.0 —0.5 0.0

“there be dragons”

—_

O
™~
o

Ramirez-Tannus et al. 2023

s
.

.
R
—
~gille®

—

)
w
oo

FUV luminosity of SFR: Lgpgr [erg s™!]

1036
—— Mean
/," ---- Median
1034 oo e . 10.range

SFR realisations

':'bes't studied disks| | .
102 103 10* 10°
Winter & Haworth 2022 Number of member stars: N




Timescale: external UV destroys disks,

Most planet-forming disks will be affected | reducing time & mass for planet formation
by UV from nearby high-mass stars.

= Need surveys of different

Relative 2D probability density for stars (log-space) high-mass regions
—2.5 —-2.0 —1.5 —-1.0 —0.5 0.(

- Ingredients: UV may leave organics intact
— and/or enable organic chemistry — need

!
.
. -
. e
.....
-

“there be dragons”

.
...........

s 1l more representative samples

;
-----

—_

)
™~
o

- Need sample of low-mass sources
‘‘‘‘‘ > Il in different UV environments

—

(e
w
oo

FUV luminosity of SFR: Lgpgr [erg s™!]

1036 Environment: evolution may be crucial to
Mean understand the demographics of exoplanets
/," ---- Median
1034 17 . o B 10 range 1
e e SER realisations —> Need to measure the local
(le RIS e L) I , , gas/dust environment
102 103 104 10°

Winter & Haworth 2022 Number of member stars: N




True proplyds are small, ~250-500 AU, not well-resolved
for d = 2 kpc with the best-available instruments.

&

2 3 ==250AU

4 5 ==500AU

ESA/Hubble

Smith, Bally, & Morse et al. 2003



Protostellar jets have enabled the first and so far only
ALMA observations of disks in d = 2 kpc regions.

Smith, Bally, & Morse et al. 2003

Mesa-Delgado et al. 2016

- see also Cortes-Rangel et al. 2020, 2023, Reiter et al. 2020



Protostellar jets have enabled the first and so far only
ALMA observations of disks in d = 2 kpc regions.
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Protostellar jets have enabled the first and so far only
ALMA observations of disks in d = 2 kpc regions.
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Illuminating the tadpole’s metamorphosis: UV radiation
from >70 O-type stars floods the Carina region.
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Illuminating the tadpole’s metamorphosis: UV radiation
from >70 O-type stars floods the Carina region.
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Using MUSE to put star/planet-forming disks in context:
jonization front properties of the globule and outflow.
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MUSE+ALMA connects the ionized outflow (in the Hil
region) and the molecular outflow (in the globule).
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Molecules are rapidly dissociated once the outflow enters
the H 1l region —no cold CO, only hot H.,.
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globulette PCYC 842

- molecules rapidly dissociate outside the globule



Molecules are rapidly dissociated once the outflow enters
the H 1l region —no cold CO, only hot H.,.
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molecular outflow




Molecules are rapidly dissociated once the outflow enters
the H 1l region —no cold CO, only hot H.,.
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Using MUSE to put star/planet-forming disks in context:
ohotoevaporation rate and lifetime of the globule.
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Quantify the impact of external heating on the chemistry
matics of the star-/planet-forming system.

¥ = dust near the protostar is cold -
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Protostars embedded in dense cocoons may not notice
their environment; exposed YSOs absolutely will.
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Shielding time has a strong impact on the final mass and
orbital radii of single planets (pebble accretion models).

cluster age, Myr

Qiao et al. 2022

3000
Fraction of all disks with
2500 ph.otoevapo ration-
driven mass loss
-
' 2000 -
>
o)
=
T 1500
o
—l
A
1000 A
=
- Number of disks
5001 with mass-loss
driven by
0 photoevaporation ||
0.5 1.0 1.5 2.0

o o o @k
NS . (@) (00} o
Proportion of n (M > 10" 8Myyr—1)

O
N

O
o

. dinit = 25 AU
5 [
*—& < L
100 7
@
=
-
© 107!
R =
e
=
1072 4
3 —@®— Fruv,max = 10 Gy
FFUV, max = 100 GO
—®— Fryv, max = 1000 Gy
—— FFUV,max = 10000 GO
10_3 1 1 T I 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
tsh / Myrs

shielding time

Qiao et al. 2023



Most planet-forming disks will be affected
by UV from nearby high-mass stars.
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Quantifying the impact of external photoevaporation on
planet-forming disks requires a survey of typical conditions.
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With MUSE, measure spectral types, accretion (requires a
disk!), outflows, and separate stars from the background.

—— MUSE spectrum
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Building on resolved observations of proplyds, identity
spectral signatures of external photoevaporation.
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Most planet-forming disks will be affected
by UV from nearby high-mass stars.
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Ingredients: UV may leave organics intact
and/or enable organic chemistry — need
more representative samples

MIRI CH,* 7.16-7.20 um

Berné et al. 2023

—— Mean
---=- Median
........ 10 range

SFR realisations

102
Winter & Haworth 2022

103 10*
Number of member stars: N

105

Environment: evolution may be crucial to
understand the demographics of exoplanets

Tadpole globule

PCYC 838 &
possible

microjet

\/ﬁ

HH 900

Reiter et al. 2019 -

bow shock




	Slide 1: UV feedback in stellar clusters: photo-evaporation of planet forming disks and proplyds 
	Slide 2
	Slide 3: Feedback (esp. radiation) from massive stars affects planet-forming disks by heating and photoevaporating them. 
	Slide 4: Photoevaporating protoplanetary disks (proplyds) are direct evidence of external photoevaporation of disks. 
	Slide 5: Photoevaporating protoplanetary disks (proplyds) are direct evidence of external photoevaporation of disks. 
	Slide 6: UV radiation from high-mass stars illuminated everything in the vicinity – disks, globules, outflows…
	Slide 7: Most stars form near high-mass stars that will illuminate and evaporate the planet-forming disks around nearby low-mass stars.
	Slide 8: Feedback (esp. radiation) from massive stars affects planet-forming disks by heating and photoevaporating them. 
	Slide 9: Feedback (esp. radiation) from massive stars affects planet-forming disks by heating and photoevaporating them. 
	Slide 10: Feedback (esp. radiation) from massive stars affects planet-forming disks by heating and photoevaporating them. 
	Slide 11: Xue1 has all the elements to make Earth-like planets despite living in an H ii region more extreme than Orion. 
	Slide 12: Xue1 has all the elements to make Earth-like planets despite living in an H ii region more extreme than Orion. 
	Slide 13: Feedback (esp. radiation) from massive stars affects planet-forming disks by heating and photoevaporating them. 
	Slide 14: Remaining gas and dust in the star-forming ecosystem protects disks, affects dynamical evolution, may aid enrichment, ... 
	Slide 15: Shielding time has a strong impact on the final mass and orbital radii of single planets (pebble accretion models). 
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Using MUSE to put star/planet-forming disks in context: ionization front properties of the globule and outflow.
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Protostars embedded in dense cocoons may not notice their environment; exposed YSOs absolutely will. 
	Slide 32: Shielding time has a strong impact on the final mass and orbital radii of single planets (pebble accretion models). 
	Slide 33: Most planet-forming disks will be affected by UV from nearby high-mass stars.
	Slide 34: Quantifying the impact of external photoevaporation on planet-forming disks requires a survey of typical conditions. 
	Slide 35: With MUSE, measure spectral types, accretion (requires a disk!), outflows, and separate stars from the background. 
	Slide 36: With MUSE, measure spectral types, accretion (requires a disk!), outflows, and separate stars from the background. 
	Slide 37: Building on resolved observations of proplyds, identify spectral signatures of external photoevaporation. 
	Slide 38: Most planet-forming disks will be affected by UV from nearby high-mass stars.

