Stellar feedback on different scales: Simulations

Stefanie Walch I.Physics Institute, University of Cologne

D. Seifried, T.-E. Rathjen, V. Brugaletta, P. Nürnberger (University of Cologne)
R. Wünsch (Czech Academy of Sciences, Prague)
P. Girichidis, R. Klessen, S. Glover (ITA Heidelberg)
T. Naab, (MPA Garching)
P. Clark (Cardiff University)

Ballyfest, Visegrad - 27.5.2025

The impact of (massive) star formation: The signatures of stellar feedback are ubiquitous in the Interstellar Medium (ISM)

Stellar feedback driven bubbles in the Lobster Nebula (NGC 6357)

Stellar feedback:

-Protostellar outflows -Radiation (FUV, EUV, X-rays) -Radiation pressure -Stellar winds -Supernovae

-Cosmic Rays

Blue: ionized gas Red: dust Image taken from: APOD 26.12.2018

The role of stellar feedback in galaxies

- What is the origin of the stellar initial mass function (IMF)?
- Why is star formation inefficient on galactic scales?
- ⇒ Molecular cloud formation, **stellar feedback**, and N-body dynamics
- What shapes galaxies over time?
- \Rightarrow How do stars and their feedback affect the ecology of galaxies?
- Feedback is so interesting (and difficult) because it couples the small scales of individual stars with scales of ~100 pc and beyond
- \Rightarrow Individual galaxies (or regions in them) -> down to stars -> back up

From Geen+2023, PASP 135

Motivation and Key Questions

- Stellar masses / stellar initial m
- Inefficient star formation
- \Rightarrow Molecular cloud formation, ste
- What shapes galaxies over time
 ⇒ How do stars and their feedbac
- Feedback is so interesting (and individual stars with scales of ~
- Individual galaxies (or regions i

- Simulations allow us to connect scales (spatial and temporal)
- Dynamic range! A major challenge for numerical simulations!

A Multi-scale Perspective on Stellar Feedback in the Context of Galaxy Evolution

Types of Simulations

- Isolated (massive) cloud cores (\leq 1 parsec)
- Isolated molecular cloud (few 10 parsec)
- Zoom into single molecular cloud (few 100 parsec)
- Multi-phase ISM (few hundred parsec)
- Galaxy-scale zoom-ins (few kilo-parsec)
- Cosmological volumes (few mega-parsec)
- \rightarrow Different scales, different strengths

Types of Simulations

- Isolated (massive) cloud cores (≤ 1 parsec) => Talk by Anna Rosen
- Isolated molecular cloud (few 10 parsec)
- Zoom into single molecular cloud (few 100 parsec)
- Multi-phase ISM (few hundred parsec)
- Galaxy-scale zoom-ins (few kilo-parsec)
- Cosmological volumes (few mega-parsec)
- \rightarrow Different scales, different strengths

=> Talks by Sabrina Appel, Enrique Vazquez-Semadeni, Cheryl Lau

=> Talks by Natalia Lahén,
Mattia Sormani, Eric
Andersson, Matt Orr
=> Talk by Diederik Kruijssen

Protostellar jets & outflows

"Couple P, E directly into the parental cloud" - John Bally Recent review by Bally+2024

Most YSOs have them...

They affect:

- Star formation efficiency (SFE) in star-forming cores
- Stellar multiplicity
- The peak of the stellar IMF (see later)

Protostellar jets & outflows

Protostellar jets & outflows

What about magnetic fields?

Gerrard, Federrath, Kuruwita 2019:

Effect of turbulent magnetic fields on the structure of protostellar outflows:

No clear outflow structure in fully turbulent case

Feedback from massive stars

S. Walch, Ballyfest, Visegrád, 27.5.2025

Energy input from massive stars: Stellar winds, ionizing radiation & Supernovae:

S. Walch, Ballyfest, Visegrád, 27.5.2025

Energy input from massive stars: Stellar winds, ionizing radiation & Supernovae:

How is this energy coupled to the ISM?

- ⇒ How is radiative energy converted into kinetic and thermal energy of the surrounding gas?
- ⇒ Apart from the momentum delivered by winds and supernovae: how much energy is delivered depends on radiative cooling, i.e. depends on the conditions in the ISM environment

Summary of observational assessment of pre-supernova feedback:

e.g., Schinnerer & Leroy, 2024

Why radiative cooling is important

Beautiful images means: gas is radiating! Photons are lost => radiative cooling

The **input momenta** (wind and supernovae) **are much smaller than the actual momentum** associated with the expansion of evolved bubbles

=> Most of the work done on the ambient medium **is PdV work** => hydrodynamic effect!

The longer the gas stays hot, the longer a pressure gradient across the bubble interface can be sustained => more acceleration

- ⇒ Radiative cooling is key to understanding the dynamics of the surrounding gas
- ⇒ We call this "coupling" of energy to the surrounding gas (ISM)
- ⇒ How much thermal E is transformed into kinetic E of the surrounding ISM?

Momentum equation of ideal MHD + gravity, No viscosity

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = \frac{(\mathbf{B} \cdot \nabla)\mathbf{B}}{4\pi} - \nabla P_{\text{tot}} + \rho \mathbf{g},$$

Supernova remnant simulation: Without cooling (left), with cooling (right) Walch & Naab 2015

Energy-driven vs. momentum-driven winds

Energy-driven wind

Assumes energy conservation

- ⇒ No (or very small) losses due to radiative cooling
- ⇒ Upper limit for the impact of stellar winds!

Energy-driven winds (remember, NO COOLING), could unbind up to 100 times the mass of formed stars, hence reducing the star formation efficiency to just 1%

 $\frac{Uncertainty:}{\epsilon_w} \leq 1 \text{ Cooling efficiency}$

Momentum-driven wind

Assumes momentum conservation

- ⇒ Most extreme case assumes maximum cooling, i.e. no additional momentumdriving by the expanding hot wind bubble
- ⇒ Lower limit for the impact of stellar winds!

Momentum-driven winds (MAXIMUM COOLING), cannot unbind significant cloud mass, hence the SFE could be as high as 90%

 $\epsilon_{mom} \stackrel{\underline{\text{Uncertainty:}}}{=} 1 \text{ Momentum boost}$ (hydro effect)

=> See also Anna Rosen's talk

Walch+2023 (pcsf.conf, 97W)

Unclear how much energy is lost by cooling in turbulent mixing layers: Determines whether winds are "energy-driven" or "momentum-driven"

State-of-the-art simulations of molecular cloud evolution with stellar winds

Lancaster +2021a/b

Study the impact of stellar winds in isolated turbulent clouds with $10^5 M_{\odot}$ and different sizes and develop an analytical model to describe the cooling of turbulent mixing layers

In simulations, cooling efficiency ϵ_w varies depending on environment!

=> Cumulative radial momentum delivered by the winds is similar despite much higher SFE in different runs: R5 (~70%) vs. R20 (~28%)

Feedback yield as an essential quantity

$$\Upsilon_{\rm fb} \equiv P_{\rm DE} / \Sigma_{\rm SFR}$$

Ostriker & Kim, 2022 Specific momentum delivered by feedback Typical values ~1000 – 3000 [(M_{\odot} km/s)/ M_{\odot}] Here (from wind): only ~100 km/s

Winds vs. Ionizing radiation in simulations of star cluster formation

- Winds only have a weak impact
- Combination of wind + ionization is more effective than only ionization
- Momentum-driven winds are not effective (e.g. Ngoumou+13)
- ⇒ But that is not surprising (see before)

Winds vs. Ionizing radiation in simulations of individual bubbles

- Need high resolution to capture trapping: currently only possible in dedicated simulations
- Geen & deKoter, 2022: analytical solution to wind dominating over radiation:
 Steep density profile (powerlaw -2) needed to enable trapping and wind domination
- => Fast (faster-than-Spitzer) bubble expansion

Winds vs. Ionizing radiation in simulations of individual bubbles

- Need high resolution to capture trapping: currently only possible in dedicated simulations
- Geen & deKoter, 2022: analytical solution to wind dominating over radiation: Steep density profile (powerlaw -2) neeed to enable trapping and wind-domination

$$v_{w,2} = 13.5 \; {
m km/s} \; igg(rac{L_w}{10^{36} \; {
m erg/s}} igg)^{1/3} igg(rac{n_0}{1000 \; {
m cm}^{-3}} igg)^{-1/3}$$

• Vider et al., in prep.: Trapping is only a temporary effect due to instabilities;

S. Walch, Ballyfest, Visegrád, 27.5.2025

Combination of feedback processes

Examples with varving combinations of feedback:

High-resolution simulations:

Isolated clouds or clumps / periodic boxes

- Bate+ (improvement throughout the years)
- Federrath+2015
- Cunningham+2018
- Starforge: Grudic+2021, etc.

<u>Global GMC simulations</u> that do not resolve individual stars:

- Dale+2013, etc.
- Walch+2013
- Skinner & Ostriker+2015
- Geen+2017
- Kim+2018
- Grudic+2018
- Haid+2019
- Li+2019
- Decaltado+2020
- Fukushima+2020
- He+2022

=> Need to include supernovae!

STARFORGE

The role of feedback for the anatomy of the IMF

Hennebelle & Grudic, ARAA review, 2024 Slide from Mike Grudic

The role of feedback for the anatomy of the IMF

Hennebelle & Grudic, ARAA review, 2024 Slide from Mike Grudic

The role of feedback for the anatomy of the IMF

High-mass cutoff set by feedback physics, and depends on cloud properties (M, Z, Σ, grav. boundedness, etc)

Star formation efficiency for different cloud surface densities

Chevance+2022, PPVII

Very high SFE in clouds with high initial gas surface density!

Radiation pressure seems to help here.

Geometry matters

How many photons are escaping? How much hot gas is just venting out?

Wareing 2018: Rosette Nebula model

Dannhauer in prep: Diamond Ring model (see talk later) Rahner+2019: 1D Warpfield models: SFE sensitive to initial cloud density profile

Steeper density profile => higher SFE

Connecting scales matters: The environment of star-forming clouds

Ganguly, SW+ 2024 **Atomic structures:** supervirial in all cases **Molecular structures:** slightly supervirial **Dense molecular structures (n>10⁴ cm⁻³): could be gravitationally bound**

- Not all gas in molecular clouds is gravitationally bound!
 - The largest bound scale is typically (much) smaller than the cloud scale!
 - Potentially bound mass fraction is typically <50%
 - Definitely bound mass fraction is typically below 10%

Feedback from massive stars: Supernovae

See also:

Gatto,SW+15; Walch & Naab 2015; Ostriker+2015; Hennebelle & Iffrig 2015

⇒ In high-density environments, the Sedov-Taylor phase could be inhibited and the reverse shock could be suppressed (Jiménez, Tenorio-Tagle, Silich, 2019)

Generally, SNe act to late to efficiently regulate SF (e.g. see Rathjen+2021; Schinnerer & Leroy, 2024)

However, they drive galactic fountains and outflows ⇒ see SILCC

Simulating the multi-phase ISM

See also:

Kim & Ostriker (2018, 2017, 2022, 2023 TIGRESS), Hill +2018, Hennebelle+2014, Iffrig & Hennebelle (2017), Safranek-Shrader +2017, Martizzi +2016, Sur+2016, Gent +2013a, +2013b, Hill & MacLow (2006), deAvillez & Breitschwerdt (2005), SILCC: Walch+2015, Girichidis+2016, Gatto+2017, Peters+2017,..., Rathjen+2021, Rathjen+2023, Brugaletta+2024, astro.uni-koeln.de/~silcc etc.

In SILCC, we have an on-the-fly chemical network, and different forms of feedback incl. radiation transport (FUV, EUV), stellar winds, supernovae, and cosmic rays

SILCC simulations: multi-phase ISM in a stratified environment Feedback: winds + ionizing radiation + supernovae + Cosmic Rays

What regulates star formation in the multi-phase ISM? Comparison of different stellar feedback processes

In case of supernova feedback alone, the star formation rates are too high \Rightarrow Stellar <u>radiation</u> and winds are needed to regulate star formation

What regulates star formation in the multi-phase ISM? Comparison of different stellar feedback processes

In case of supernova feedback alone, the star formation rates are too high \Rightarrow Stellar <u>radiation</u> and winds are needed to regulate star formation

Different surface densities, Σ_{gas} =10-100 M_o/pc²

How feedback shapes the multi-phase ISM

- Gas distributed over very broad temp / dens range
 - "equilibrium curves" (heating – cooling balance) for different interstellar radiation field shown as lines
- Most gas mass in warm (ionised) and cold ISM, with a significant fraction in the "thermally unstable" regime

Rathjen+2025

S. Walch, Ballyfest, Visegrád, 27.5.2025

How feedback shapes the multi-phase ISM

- Gas distributed over very broad temp / dens range
 - "equilibrium curves" (heating – cooling balance) for different interstellar radiation field shown as lines
- Most gas mass in warm (ionised) and cold ISM, with a significant fraction in the "thermally unstable" regime

Rathjen+2025

S. Walch, Ballyfest, Visegrád, 27.5.2025

How feedback shapes the multi-phase ISM

- Gas distributed over very broad temp / dens range
 - "equilibrium curves" (heating – cooling balance) for different interstellar radiation field shown as lines
- Most gas mass in warm (ionised) and cold ISM, with a significant fraction in the "thermally unstable" regime
- DIFFUSE molecular gas with FUV rad.

S. Walch, Ballyfest, Visegrád, 27.5.2025

How to drive outflows? Massloading vs. hot gas VFF

Correlation of Mass loading (measured at z=± 1 kpc) with the hot gas volume filling factor in the galactic midplane => fountain/outflow regulated by thermal feedback

See also:

Fielding +2018, Li, Bryan & Ostriker (2017), Creasey +2013, Tomisaka & Ikeuchi (1986)

Sound speed of the outflowing gas vs. outflow velocity with/without cosmic rays

Conclusions

- Protostellar outflows set the peak of the IMF and impact stellar multiplicity; they regulate the SFE in lower-mass star-forming cores
- **Radiation** is most important for regulating star formation on galactic scales
- **Stellar wind** bubbles are not energy-driven, but not purely momentum-driven either (it's a little bit better than that)
- Geometry matters and not all gas in clouds is gravitationally bound
- FUV radiative feedback causes diffuse molecular gas component
- Supernovae act too late to efficiently regulate star formation
- But, Supernovae determine the gas pressure near the midplane and drive galactic fountains / outflows
- **Cosmic Rays** lift gas on longer time scales, outflowing gas is cooler and multi-phase

Exciting time ahead of us – simulations bridging spatial scales, going from kilo-parsec scales to individual stars!

Upoming Habitats of massive stars across cosmic time August 17-21, 2026 Cologne

Energy-driven vs. momentum-driven winds

Energy-driven wind

Spherical, virialized molecular cloud with escape velocity v_{esc}~10 km/s $\dot{E}_{\mathrm{w},\star} = \frac{1}{2} \dot{M}_{\mathrm{w}} v_{\mathrm{w}}^2$

 $\eta_{
m w}=0.01\,{
m M}_\odot^{-1}$

$$E_{\rm fb,w} = \epsilon_{\rm w} \eta_{\rm w} \bar{E}_w M_\star$$
$$E_{\rm fb,ej} = \frac{1}{2} v_{\rm esc}^2 M_{\rm fb,ej}$$

Wind energy input

#massive stars formed per M_{sun}

Total energy provided by winds

Total energy needed to unbind gas from the molecular cloud

$$\frac{M_{\rm fb,ej}}{M_{\star}} = 2\epsilon_{\rm w}\eta_{\rm w}\frac{\bar{E}_w}{v_{\rm esc}^2} = \epsilon_{\rm w} \times 0.02 {\rm M}_{\odot}^{-1}\frac{10^{49}\,{\rm erg}}{10^{12}\,{\rm cm}^2 s^{-2}} = 100\epsilon_{\rm w}$$

Energy-driven winds (remember, NO COOLING), could unbind up to 100 times the mass of formed stars, hence reducing the star formation efficiency to just 1%

<u>Uncertainty:</u> $\varepsilon_w \leq 1$ Cooling efficiency

Walch+2023 (pcsf.conf, 97W)

Energy-driven vs. momentum-driven winds

Momentum-driven wind

Spherical, virialized molecular cloud with escape velocity v_{esc}~10 km/s

 $\dot{p}_{\rm fb,w} = \dot{p}_{\rm fb,ej}$

 $\eta_{
m w}=0.01\,{
m M}_\odot^{-1}$

Equating the wind momentum and the momentum needed to unbind the gas

averaged massive star pop

#massive stars formed per M_{sun}

 $\dot{p}_{
m fb,w} = M_{
m w} v_{
m w} \eta_{
m w} M_{\star} \epsilon_{
m mom}$ Momentum input by IMF-

 $\dot{p}_{
m fb,ei}=\dot{M}_{
m fb,ej}v_{
m esc}$ Momentum required to unbind gas

 $\frac{M_{\rm fb,ej}}{\dot{M}_{\rm star}} \approx \epsilon_{\rm mom} 0.01 \,\,{\rm M_{\odot}^{-1}} \frac{100 \,\,{\rm M_{\odot} km s^{-1}}}{10 \,\,{\rm km s^{-1}}} = 0.1 \epsilon_{\rm mom}$

Compare with Matzner (2002), who give an even lower average momentum input for stellar winds of just 38 M_{sun} km/s

Momentum-driven winds (MAXIMUM COOLING), cannot unbind significant cloud mass, hence the star formation efficiency could be as high as 90%

Uncertainty: $\varepsilon_{mom} \ge 1$ Momentum boost

Walch+2023 (pcsf.conf, 97W)