The PDR Toolbox

Marc Pound co-I: Mark Wolfire

Reliable Astrophysics at Everyday Low, Low Prices! ®

pdrtpy.readthedocs.io Pound & Wolfire, 2023, AJ, 165, 25

Thanks to our sponsors:

- NASA ADAP #80NSSC24K0634 dustem.astro.umd.edu
- SOFIA FEEDBACK Legacy Program feedback.astro.umd.edu
- JWST-ERS PDRs4All program <u>pdrs4all.org</u>

Star Formation, Stellar Feedback & the Ecology of Galaxies

What is the PDR Toolbox and Why should you use it?

What?

- An open source Python toolkit for discovering the physical properties of PDR gas.
- User-friendly analysis of observations of PDRs from JWST, SOFIA, GUSTO, ALMA, Herschel, and many more.
- Pre-computed **models** of PDR emission and various **tools** to explore models & fit observations to them.
- Tutorial jupyter notebooks
- Easy to install: pip install pdrtpy

Why?

- PDRs are the signposts of **radiative feedback** in star-forming regions
- Throughout the ISM, UV radiation plays a critical role in heating, cooling, and chemistry of the gas phase.

Most of the non-stellar baryons in galaxies are in PDRs

The Models

Wolfire/Kaufman

- Kaufman+2006; many updates since 2020 "WK2020"
- plane-parallel geometry, directional FUV illumination
- face-on emergent intensity (edge-on and angles coming soon!)
- Z = 0.2 (SMC), 0.5 (LMC), 1.0, 3.0
- [C II], C I, [O I], H₂, CO, ¹³CO, [Fe II], [S I], FIR continuum
- New species computed upon request!

KOSMA-Tau

- Röllig & Ossenkopf-Okada 2022
- spherical geometry, isotropic FUV illumination
- clumpy PDRs approximated by ensemble of spherical masses
- Z=1
- [C II], C I, [O I], H₂, CO, FIR continuum

Comparable physics & chemistry in both

What's in the models?

The models files are intensity ratios or intensities as a function of H nucleon density n and external radiation field G_0

n range: $10 - 10^7$ cm⁻³ G₀ range: $0.1 - 10^7$ Habing

 $(1 \text{ Habing} = 1.6 \times 10^{-3} \text{ erg s}^{-1} \text{ cm}^{-2})$

Stored as FITS files (also available outside the Toolbox)

The Tools

Star Formation, Stellar Feedback & the Ecology of Galaxies

Determining n and G_0 from observations

LineRatioFit: From your observed intensities, LSQ fitted n, G_0 with errors, overlay plots, χ^2 map

MCMC fitting & corner plots also possible

Star Formation, Stellar Feedback & the Ecology of Galaxies

Determining n and G_0 from observations: Maps!

Input FITS images of intensities w/errors, get n, G_0 maps and per pixel fit statistics n [cm⁻³] G_0 [Habing] 10⁵ - 160 -2°15 -2°15 - 140 · 10⁴ - 120 20' 20' - 100 DEC 25' 25 - 80 - 10³ - 60 30' 30' - 40 - 10²

Derived from Horsehead data from Pabst+2017 (Thanks, Cornelia!)

35

5^h42^m00^s 41^m40^s

20^s

RA

00^s

40^m40^s

35

5^h42^m00^s 41^m40^s

20^s

RA

00^s

40^m40^s

- 20

Excitation Diagram Fitting

ExcitationFit: Excitation diagram fitting - H₂, CO, ¹³CO. (More molecules coming) Solves for temperatures and column densities, and optionally, ortho-para ratio, and A₁,

Excitation Diagram Fitting: Maps!

Interactively view fitted quantities. Click on any pixel and see its excitation diagram

JWST H₂ data of the Centaurus A galaxy (Evangelista+, in prep)

Phase space diagrams: plot data in model space

Star Formation, Stellar Feedback & the Ecology of Galaxies

Model enhancements:

- Multiple viewing angles edge-on, 75, 60, 45, 30, 15 degrees (WK models only)
- More metallicities for dwarf galaxies, high-z galaxies, and galactic nuclei (Z=0.1 to 5)
- Deuterium chemistry for protostellar disk evolution (D/H ratio); HD at 112 μ m has 4x lower energy than H₂
- More spectral lines (request your favorite!)

Tool enhancements:

- Regularization in image-based fitting more robust solutions when observations are limited or of low S/N
- Excitation fitting more molecules and fitting multiple v-levels simultaneously
- New tools for cross-comparison between different model sets

John in 1989 on the Kuiper Airborne Observatory.

We were flying our 490 GHz receiver.

Observing CI -- A PDR LINE!

THEEND