Dust Coagulation in a Massive Protostellar Disk
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1. Introduction 2. Impact of Dust Coagulation on Disk Structure

It is essential to understand the formation of massive stars because of their Figure 3: A schematic of our axisymmetric and steady analytical disk model,
pivotal roles in galaxy evolution and the formation of stars and planets. Recently, including dust evolution. To understand the picture of dust growth and its impact, we
an increasing number of discoveries of accretion disks around massive protostars self-consistently solve the gas disk structure and dust growth from the outer edge of
have been reported (e.g., Johnston et al. 2020). More recently, dust growth in a the disk inward, terminating at a distance 10 au from the star.

massive protostellar disk has been suggested by ALMA 114 mm polarization
observation (Girart et al. 2018). In these observations, a polarization vector pattern
aligned with the minor axis of the disk and a relatively high polarization fraction of
several percent were detected in the southwestern region (~ 100 au) of the
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Dust growth alters the optical properties of the Figure 1 GGD27 MM

disk (Figure 2). This affects submillimeter - - ——

observations and introduces uncertainties in the | 6 Figure 4 shows radial profiles of key physical quantities in the massive

protostellar disk model. Black and red lines indicate cases without and with dust
coagulation, respectively. We used parameter values assuming a massive
protostellar disk, as listed in Table 1. The results show that dust can grow even in
5 the massive protostellar disk. Next, we examine the impact of dust growth on the
disk structure. The temperature of a massive protostellar disk is determined by
both stellar irradiation and accretion heating.

Accretion heating is more effective in Table1 The parameters of our dISk model
the optically thick disk. Dust growth esmesemssmsmn : s .

estimation of physical quantities such as disk r
temperature and mass. Additionally, it affects key |
factors related to disk evolution, including cooling
rate and heating efficiency. Therefore, it is crucial to
clarify the mechanisms of dust growth and its impact.
In this poster, we present our ongoing research
aimed at deepening this understanding.
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4. Dust Coagulation’s Effect on Disk Evolution

3. Dust Coagulation’s Effect on Disk Observation

To investigate the observational impact of dust growth, we performed radiative transfer Many massive protostellar disks exhibit non-axisymmetric and time-varying
calculations based on the dust coagulation disk model. We use the new solution, structures, making it important to study how dust grows within such disks and
updated from solutions such as Sierra et al. (2020). the effects of this growth. We present results from 2D (r,¢) thin disk
e 1-342 (% hydrodynamic simulations using FEOSAD (Vorobyov et al. 2018), which follow the
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I(z) = 13 2[ B (7))e " dr + collapse of a molecular cloud core and the formation of a massive protostar and its
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disk. FEOSAD is a simulation code that performs two-fluid calculations of gas and
_ dust, as well as dust coagulation. It also incorporates changes in opacity associated
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\/56’“(1 i’“) (+ \/g'u) S \/g'u)e [ By(r;)e‘\/3_€ufédf;; with dust growth. Comparison with azimuthally averaged a,,,, values and analytical
I=3e,u” (1 +\/€_,,)+(1 —\/e_,,)e‘ St g solutions from the 1D model indicates that a_,, values are generally consistent
within an order of magnitude inside ~ 1000 au (Figure 6).

Figure 5 shows the radiative transfer results of the dust coagulation disk model (red
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gE 3 — The reduction of opacity due to dust growth lowers the disk temperature. This
. B _ S . s , makes the disk more gravitationally unstable (Figure 7), promoting disk
10 Rag [10] 10 Rag [10] fragmentation driven by gravitational instability and potentially leading to binary
adius riad adius riad formation. We define "clumps" as gravitationally bound cells (Matsukoba et al.
To demonstrate our model, we attempt to reproduce the Stokes | emission of 2022), and we evaluate the number of such fragments formed (Figure 8). The disk
GGD27-MM1 (Figure 6) while maintaining consistency the dust distribution inferred with dust growth shows more frequent fragmentation than the one without.
from polarization, a stellar luminosity five times higher than previously assumed is Notably, when dust has grown, fragmentation occurs inside 300 au due to the
required. This corresponds to the maximum luminosity explained by the flashlight reduced effectiveness of accretion heating. In contrast, the disk without dust
effect. growth fragments little in this region where accretion heating remains effective.
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