
We calculate the rotation measure, RM = Τ𝑒3 (2𝜋 𝑚e
2 𝑐4) 𝑙׬ 𝑛e𝐵∥ d𝑙. Fig. 4 shows

the RM increment in a layer of cells, compared to the distribution of ISM phases.
The highest absolute values are reached in the WIM, and the lowest in the HIM.
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I Introduction
In this work, we use data from
the SILCC simulations [1] to
investigate the properties of
galactic magnetic fields and how
they influence observations,
focusing on Faraday rotation.
We show the magnetic field to be
coherent over ~50 pc. Additio-
nally, we use synthetic rotation
measure observations to investi-
gate how accurately the magnetic
field can be determined from
observations [2].

III Contribution of B and ne to RM

IV Implications for Observations

Fig. 1: Slice of the density through a SILCC simulation domain, 100 Myr after the onset of star
formation. The magnetic field direction is indicated by arrows showing the magnetic field strength
as color. The magnetic field exhibits a complex spatial structure, shaped by stellar feedback.

Fig. 2: Parallel magnetic field along the y axis.
Positive values of B∥ are colored in blue. The
length of one patch is marked.

Fig. 3: Left: Distributions of patch and autocorrelation lengths along the y axis, summed for all
simulation times t ≳ tSF + 20 Myr. The distributions are well fitted by lognormal PDFs, shown as
dotted lines. The vertical lines indicate the geometric means. Right: Autocorrelation length and
parameters of the patch length distribution along the y axis against time. Shown are the arithmetic
and geometric mean, as well as the 68 % quantile.

Fig. 5: RM contribution of the ISM phases to the total RM,
shown as the dotted line. The lines and the shaded regions
show the mean and 68% quantile, respectively.

Fig. 4: Rotation measure increment
dRMy in a slice of one cell size
(ds 3.9 pc) thickness at y = 0 pc,
next to a corresponding slice
showing the ISM phases. The
colorscale is linear in the interval
[ 10 5, 10 5] rad/m2 and logarithmic
outside it.

Fig. 7: PDF of the correlation between the average line-of-sight
magnetic field 𝐵∥ and a reconstruction, 𝐵∥rec, obtained from
the observed RM assuming a constant electron density. The
magnetic field can be reconstructed up to a factor of ~10.
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Two measures of magnetic field cohe-
rence along a line of sight are studied:

• The patch length LP is the length
between sign reversals of B∥, as shown
in Fig. 2.

• The autocorrelation length LA is the
integrated autocorrelation function
A( l)= ۦ) B∥(l) B∥(l + l) ۧ − B∥)/ B∥ .

The left panel of Fig. 3 shows the
distributions of LP and LA. Both follow a
lognormal PDF. The time evolution is
shownshown in the right panel. Both measures yield the same length scale of ~50 pc,

with fluctuations of tens of parsec. This length scale implies a lower limit to the
resolution of observationalmagnetic field tomography.

In Fig. 5, we show the
contribution of the ISM
phases to the total RM.
The WIM contributes
most strongly to the RM,
closely followed by the
WNM. The CNM and HIM
contribute least. This is
mostly due to the different
electron distributions:
While the magnetic field
reaches similar values in
the cold and warm
phases, the maximum
electron density depends
strongly on the ISM phase,
as shown in Fig. 6.

V Conclusion and Outlook
We find the magnetic field to be coherent on scales of ~50 pc, requiring a
minimal resolution in observations. The feedback-shaped WIM contributes
most strongly to RM. Magnetic field reconstructions from RM are accurate only
up to a factor of ~10.
To further study the possibilities and limitations of Faraday rotation
observations, we will compute synthetic observations from our simulations using
full polarised radiative transfer, including synchrotron emission from the
cosmic ray population modelled in SILCC.

For each line of sight, we
calculate the actual and
reconstructed magnetic
field:
• 𝐵∥ = 𝑙׬ 𝐵∥ d𝑙 /𝑙

• 𝐵∥
rec = 𝑙׬ 𝑛e𝐵∥ d𝑙 /( ො𝑛e𝑙)

∝ RM/෡𝑁e,
assuming a constant electron
density ො𝑛e = 10-2 cm-3. The
factor 𝐵∥ /𝐵∥

rec is represen-
ted by the diagonal lines in
Fig. 7. It spans about three
orders of magnitude due to
large fluctuations in the true
electron density. Using a
more informed estimate of
the electron column density
scaled with the hydrogen
column density did not signi-
ficantly reduce the scatter.

Fig. 6: Left: PDF of the
electron number density.
All times t ≳ tSF + 20 Myr
are summed. The light grey
line represents the total
volume. Right: Same as left,
for the magnetic field
strength.


